Пусть дан равнобедренный треугольник АВD. Центр вписанной окружности находится в точке О пересечения биссектрис.Значит АО и DО - биссектрисы. Проведем биссектрису ВН. Треугольник равнобедренный, значит ВН является и высотой и медианой. Тогда АН=DН=12:2=6. Касательные из одной точки к окружности равны (свойство). Следовательно, ЕD=DН=CA=AH=6. ВЕ=ВС=18-6=12 и треугольник СВЕ так же равнобедренный. Треугольники СВЕ и АВD подобны, так как сли две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны (ВС/ВА=ВЕ/ВD и <B - общий). Коэффициент их подобия равен отношению соответственных сторон, то есть СЕ/АD=12/18=2/3. Тогда СЕ=АD*(2/3) или СЕ=12*2/3=8. ответ: СЕ=8.
Пусть дан равнобедренный треугольник АВD. Центр вписанной окружности находится в точке О пересечения биссектрис.Значит АО и DО - биссектрисы. Проведем биссектрису ВН. Треугольник равнобедренный, значит ВН является и высотой и медианой. Тогда АН=DН=12:2=6. Касательные из одной точки к окружности равны (свойство). Следовательно, ЕD=DН=CA=AH=6. ВЕ=ВС=18-6=12 и треугольник СВЕ так же равнобедренный. Треугольники СВЕ и АВD подобны, так как сли две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны (ВС/ВА=ВЕ/ВD и <B - общий). Коэффициент их подобия равен отношению соответственных сторон, то есть СЕ/АD=12/18=2/3. Тогда СЕ=АD*(2/3) или СЕ=12*2/3=8. ответ: СЕ=8.
кут АВК=30°
кут СВК=18°
Объяснение:
дано:
кут АВС=48°
ВК-промінь
кут АВК:кут СВК=5:3(кут АВК відноситься до кута СВК, як 5 до 3-ох)
розв'язання
(задача через нехай)
нехай кут АВК=5k°, кут СВК=3k°. вся градусна міра кутів(кут АВС) дорівнює 48°. маємо рівняння:
5k+3k=48;
8k=48;
k=6;
отже, кут АВК=5•6°=30°, кут СВК=3•6°=18°