На основании равнобедренного треугольника отметили две различные точки F и E , а на боковых сторонах AB и –BC точки D и G соответственно так, что AD +AE = AC и CF+ CG = AC. Найти угол между прямыми DF и EG, если угол ABC = 70°.
Решение: SABCD=EF*(AD+BC)/2=2000 PABCD=AB+BC+CD+AD=200 AB=CD (так как трапеция равнобедренная). Чтобы окружность можно было вписать в трапецию должно выполняться условие - суммы противоположных сторон трапеции должны быть равны, т.е. AD+BC=AB+CD AD+BC=2AB (т.к. AB=CD) Тогда: PABCD=AB+BC+CD+AD=AB+2AB+AB=4AB=200 AB=50 Значит, AD+BC=2*50=100 SABCD=EF*(AD+BC)/2=EF*100/2=EF*50=2000 EF=40 Проведем высоту BH, как показано на рисунке. BH=EF=40, так как BEFH - прямоугольник. AH=(AD-BC)/2 По теореме Пифагора: AB2=BH2+AH2 502=402+AH2 2500=1600+AH2 900=AH2 30=AH=(AD-BC)/2 60=AD-BC, вспомним, что AD+BC=100 60=AD-(100-AD) 60=AD-100+AD 160=2AD AD=80 Тогда BC=100-80=20 Рассмотрим треугольники AKF и CKE AF=AD/2=40 CE=BC/2=10 ∠AFK=∠CEK=90° ∠AKF=∠CKE (т.к. они вертикальные) По первому признаку подобия треугольников, данные треугольники подобны. Тогда, AF/CE=KF/KE 40/10=KF/KE 4=(EF-KE)/KE (вспомним, что EF=40) 4KE=40-KE 5KE=40 KE=8 ответ: KE=8
На основании равнобедренного треугольника отметили две различные точки F и E , а на боковых сторонах AB и –BC точки D и G соответственно так, что AD +AE = AC и CF+ CG = AC. Найти угол между прямыми DF и EG, если угол ABC = 70°.
Объяснение:
ΔАВС-равнобедренный,значит ∠А=∠В=(180°-70°):2=55°.
По условию АD+АЕ=АС и CF+ CG = AC ⇒АD=ЕС и AF=CG.
ΔADF ≈ΔCFG по 2 пропорциональным сторонам и равному углу между ними :∠А=∠В и AD/EC=AF/CG ⇒соответственные углы равны ∠1=∠2 ,∠3=∠4.
ΔFEM : найдем угол ∠М ; ∠Е=∠1, ∠F=∠4 . Сумма углов ∠F+∠Е=180°-55°=125° , тогда ∠М=180°-125°=55°