Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
1) АВ = 16 + 4 = 20 2) Соединим точки А и В с центром окружности. (с точкой О) 3) Получили равнобедренный треугольник АОВ АО = ОВ ( т.к. это радиусы) 4) Из вершины О треугольника проведём высоту к основанию АВ. 5) Высота в равнобедренном треугольнике является и медианой, и биссектрисой. Обозначим точку пересечения высоты с основанием точкой К. АК = КВ = (4 + 16) : 2 = 10 6) Рассмотрим прямоугольный треугольник РОК: РО = 15 (по условию) РК = 10 - 4 = 6 Найдём по теореме Пифагора ОК. ОК = Y(15^2 - 6^2) = 13,75