Теория - основа для решения задач. Раз изучаете вписанные и описанные окружности, наверняка уже знаете, что центр вписанной в треугольник окружности находится в точке пересечения его биссектрис. Знаете также и то, что центр описанной окружности - в точке пересечения срединных перпендикуляров, проведенных к каждой из его сторон. В равностороннем треугольнике все биссектрисы и высоты пересекаются в одной точке, и эта точка - центр и вписанной, и описанной окружности, так как высота равностороннего треугольника и есть срединный перпендикуляр к стороне. Почему - доказывать не стоит, наверняка знаете. О том, что медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1- считая от вершины, Вы уже должны знать. Вот на знании всех этих свойств и построено решение задачи. Точка пересечения биссектрис треугольника равноудалена от всех его сторон. Расстояние от нее до стороны - радиус вписанной окружности. В равностороннем треугольнике это 1/3 медианы - и это и 1/3 биссектрисы и 1/3 высоты ( три в одном флаконе). Радиус описанной вокруг равностороннего треугольника окружности - расстояние от точки пересечения высот до вершин треугольника, и это расстояние в два раза больше расстояния от точки пересечения биссектрис (высот) до стороны треугольника. Итак, радиус описанной вокруг равностороннего треугольника окружности в два раза больше радиуса вписанной в него. R=2r= 5*2=10 cм См. рисунок в качестве иллюстрации.
1.Рассмотрим треугольник PHO и треугольник MKO:
OH=OK (по усл.)
OP=OM (по усл.) }→ треуг.PHO=треуг.MKO
угол MOK=углу POH (по св-ву вертикальных углов)
→угол OPH = углу OMK, как соответственные элементы в равных треугольниках;
2. MO=PO (по усл.)
HO=KO (по усл.) }→PK=MH
PK=PO+KO
MH=MO+HO
3. Т.к. треугольник MOP - р/б, угол MPO= углу OMP, как углы при основании р/б треуг.;
4. Рассмотрим треугольник PMH и треугольник MPK:
MH=PK(см п. 2);
MP - общая; }→треуг. PMH= треуг. MPK;
угол MPO = углу OMP (см п.3)
ч.т.д.