В окружности с радиусом 16 см хорда стягивает дугу DE в 120 градусов.Диаметр делит эту хорду.а) найдите центральный угол опирающийся на ту же дугу.б) определите вид треугольника DFO и найдите его углы С) найдите расстояние от центра окружности до точки пересечения диаметра и хорды
1. По первому признаку подобия треугольников будут подобны любые два .(?) треугольника.
I. Признак подобия треугольников по двум углам. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны: 5. любые два равнобедренных прямоугольных треугольника .---------------- 2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС. Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны. В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120 Тогда Вариант 1) АВ=16- основание меньшего треугольника k=АМ:АВ=80:16=5 ВС=АС=120:5=24 Высоту СН ∆ АВС найдем по т.Пифагора: СН=√(ВС²-ВН²)=√512=16√2 Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см² Вариант 2) АВ=16 - боковая сторона меньшего треугольника. Тогда k=AM:BC=120:16=7,5 АС=80:7,5=32/3 Тогда СН=АС:2=16/3 Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3 S ∆АВС=ВН*СН=(32√2)/3)*16/3 S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²
У равнобедренного треугольника есть такое свойство, что биссектриса, проведённая из его вершины, является одновременно и высотой, и медианой, то есть BD делит сторону AC пополам. То есть AD=DC=1/2AC, тогда нам надо найти чему равно:
CB+BD+DC=AB+BD+AD=CB+BD+1/2AC=AB+BD+1/2AC=x
При этом у нас есть следующее: AB+BC+AC=18 см Т.к. AB=BC (Равнобедренный треугольник),то: 2AB+AC=18 AC=18-2AB Подставляем в самое первое (AB+BD+1/2AC=x): AB+BD+9-AB=x BD=x-9 И это всё. Максимум, что можно найти. Да. Тут возможны 2 варианта: 1) Спутали равнобедренный с равносторонним треугольником (тогда возможно вычислить стороны); 2) Забыли указать какой-то угол (тогда можно вычислить остальные углы и с косинусов и синусов найти стороны).
В данном же случае периметр CBD будет равен: 9+BD=x Поскольку 9 это сумма AB + 1/2AC.
В случае, если это равносторонний треугольник, то его стороны равны 6 см, тогда 1/2AC=3 см и по теореме Пифагора: Отсюда периметр CBD равен 9+ и вычисляете примерное значение. В случае известности какого-то угла (допустим, при вершине), то отнимаете от 180 градусов данный угол и делите его на 2. Так получаете угол при основании и потом, с синуса угла находите биссектрису BD, которая будет равна: А 1/2AC будет найдена с косинуса этого угла.
I. Признак подобия треугольников по двум углам.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны:
5. любые два равнобедренных прямоугольных треугольника
.----------------
2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС.
Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны.
В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120
Тогда
Вариант 1)
АВ=16- основание меньшего треугольника
k=АМ:АВ=80:16=5
ВС=АС=120:5=24
Высоту СН ∆ АВС найдем по т.Пифагора:
СН=√(ВС²-ВН²)=√512=16√2
Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см²
Вариант 2)
АВ=16 - боковая сторона меньшего треугольника.
Тогда k=AM:BC=120:16=7,5
АС=80:7,5=32/3
Тогда СН=АС:2=16/3
Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3
S ∆АВС=ВН*СН=(32√2)/3)*16/3
S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²