1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
Два заданих прямокутних трикутника - подібні
Объяснение:
Знайдемо всі кути першого прямокутного трикутника, знаючи, що сума кутів будь якого трикутника дорівнює 180°:
1 кут=90°, так як трикутник прямокутний,
2 кут=38°- за умовою задачі,
3 кут=180°-90-38=52°
Знайдемо всі кути другого прямокутного трикутника:
1 кут=90°, так як трикутник прямокутний,
2 кут=52°- за умовою задачі,
3 кут=180°-90-52=38°
1.Враховуємо першу ознаку подібності трикутників, "Якщо два кути одного трикутника відповідно дорівнюють двом кутам іншого, то такі трикутники подібні".
2.Порівнюємо кути двох трикутників- вони рівні між собою.
3. Приходимо до висновку, що трикутники подібні.