Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора.
ОН= а\2
полное условие - прикрепленное вложение.
Задание 1.
На картинке отмечены односторонние углы при прямых a и b и секущей с, в сумме они должны давать 180°.
110°+70°=180° ⇒ 180°=180° ⇒ a || b
Задание 2.
На картинке отмечены односторонние углы при прямых a и b и секущей с, в сумме они должны давать 180°.
125°+65°=180° ⇒ 190°=180° ⇒ a и b не параллельны
Задание 3.
На картинке отмечены накрест лежащие углы при прямых a и b и секущей с, они должны быть равны.
40°=40° ⇒ a || b
Задание 4.
На картинке отмечены односторонние углы при прямых a и b и секущей с, в сумме они должны давать 180°.
180°-a+a=180° ⇒ 180°=180° ⇒ a || b