Отрезок 17 - есть длина радиуса окружности. Соединим вершины при основании с центром окружности. В полученном равнобедренном треугольнике (боковые стороны равны радиусам по построению) высота, совпадает с высотой заданного треугольника и равна 8. Она же является медианой, поэтому ее конец делит основание треугольника пополам. Рассмотрим прямоугольный треугольник, образованный высотой, радиусом и половиной основания. В нем нам известна гипотенуза (радиус) и один из катетов (высота). Найдем второй катет, т. е половину основания по теореме Пифагора. Он равен 15. Т.о. мы знаем высоту заданного треугольника 17+8=25 и основание 15*2=30. Легко находим площадь.
Найдите координаты точки В, если С(-4;5)и А(-6;-7)
х(С)=( х(А)+х(В) )/2 , 2х(С)=х(А)+х(В) , х(В) =2х(С)-х(А),
х(В)=-8-(-6)=-8+6=-2.
у(С)=( у(А)+у(В) )/2 , 2у(С)=у(А)+у(В) , у(В) =2у(С)-у(А),
у(В)=10-(-6)=-8-(-7)=-1.