1. Проводим вторую высоту из тупого угла. Эти две высоты делят нижнее основание на отрезки 5, 20, 5 (т.к. трапеция равнобедренная, у нас отсекаются высотами равные треугольники (прямой угол, углы у основания равнобедренной трапеции равны) по бокам от прямоугольника со стороной 20.) => Основания равны 20 и 25+5=30. ответ: 20 и 30 2. Очевидно, что данный угол - тот, который у нижнего основания (т.к. у верхнего основания углы >90°). Проводим две высоты. Здесь так же, как и в предыдущей задаче, образуются два равных прямоугольных треугольника с катетами 3 (т.к. отсекается прямоугольник со стороной 6, как верхнее основание) и с углами 60° и 90-60= 30°. Катет лежащий напротив угла в 30 градусов равен половине гипотенузы => высота=3*2=6 ответ:6
10 см
Объяснение:
см
Пошаговое объяснение:
ΔАВС,
АС = 12 см,
ВС = 15 см,
АВ = 18 см.
В треугольнике против больше стороны лежит больший угол, поэтому биссектриса СК проведена из вершины С.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам:
\dfrac{c}{d}=\dfrac{b}{a}dc=ab
d = 18 - c
\dfrac{c}{18-c}=\dfrac{12}{15}=\dfrac{4}{5}18−cc=1512=54
5c = 4(18 - c)
5c = 72 - 4c
9c = 72
c = 8 см
d = 10 см
l^{2}=ab-cd=12\cdot 15-8\cdot 10=180-80=100l2=ab−cd=12⋅15−8⋅10=180−80=100
l=10l=10 см