Диагонали ромба относяться в соотношении 3 к 4,тогда, пусть одна диагональ 3х,вторая 4х...диагонали ромба точкой пересечения деляться пополам, тогда расмотрим один из четырёх,образовавшихся прямоугольных треугольников, одна из сторон,которого равна 2х,вторая 1,5х...
тогда по теореме Пифагора найдём третью сторону,которая является гипотенузой, и получим, что третья сторона(в квадрате) = (2х)в квадрате+(1,5)в квадрате,
раскрываем скобки и получаем, третья сторона в квадрате=4х квадрат+2,25х квадра=6,25х (квадрат)
третья сторона равна корню из 6,25 х(квадрат)
третья сторона равна 2,5 х...
периметр ромба-это сумма всех сторон,т.е. 2,5х*4=120,10х=120,отсюда следует, что х равен 12,тогда одна диагональ равна 4х=4*12=48,а вторая 3х=3*12=36
тр. АВС - прямоугольный
∠С= 90°
АВ - гипотенуза
ВС, АС - катеты
Решение задачи по теореме Пифагора:
квадрат гипотенузы равен сумме квадратов катетов.
АВ² = ВС² + АС²
Треугольник существует если сумма двух любых сторон треугольника больше, чем его третья сторона .
1 вариант.
ВС= 3 м , АС = 4 м
АВ² = 3² + 4² = 9+16 = 25 ⇒ АВ = 5 м
Имеет ли право такой треугольник на существование:
ВС + АС > АВ 3+4> 5 ; 7>5
ВС + АВ > AC 3+5 >4 ; 8>4
АС + АВ > BC 4 +5 > 3 ; 9>3
Треугольник со сторонами АВ=5 м, ВС= 3м , АС=4м существует.
ответ: АВ= 5 м
2 вариант.
АВ=3 м , ВС= 4 м ; АС - ?
3² = 4² + АС²
АС²= 9 - 16 = - 7 не удовлетворяет условию задачи, т.к. сторона в квадрате не м.быть отрицательной величиной
3 вариант:
АВ=4 м , ВС=3 м , АС - ?
4² = 3³ + АС²
АС²= 16 - 9 = 7 ⇒ АС = √7 м (≈2.65 м)
ВС+АС >АВ 3 +√ 7 > 4
ВС + АВ > AC 3 + 4 > √ 7
AC + AB > BC √7 + 4 > 3
Треугольник со сторонами АС = √7 м , АВ=4 м , ВС=3 м существует.
ответ: АС=√7 м.