М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
skshhd
skshhd
28.05.2023 14:38 •  Геометрия

сделать 1 номер по геометрии">

👇
Открыть все ответы
Ответ:
Милана3091
Милана3091
28.05.2023

В задаче есть подвох :))) возможны 2 случая.

a = 1; b = корень(15); m = 2; c =?; P = a + b + c = ? 

1. все три заданный отрезка имеют общую вершину. В этом случае решение находится элементарно, потому что

если выбрать с = 2*m = 4, то 1^2 + (корень(15))^2 = 4^2; и мы имеем прямоугольный треугольник, удовлетворяющий условию. Единственность же следует из того, что треугольник можно ДОстроить до прямоугольника и выбрать в нем в качестве трех сторон a, b, 2*m. А по 3 сторонам треугольник строится однозначно. 

Любопытно, что "прямой" решения в этом случае именно такой - строится треугольник со сторонами a b 2*m, и в нем вычисляется медиана к стороне 2*m, умножаем на 2, получаем величину с, а за ней и Р. Просто в данном случае решение очевидно.

с = 4, Р = 5 + корень(15);

Однако

2. Если предположить, что медиана проведена к стороне длины 1, то нарушится правило треугольника. НО ВПОЛНЕ МОЖЕТ БЫТЬ, что медиана проведена к стороне корень(15). 

В этом случае образуется треугольник со стронами 1, корень(15)/2 и 2, из которого можно найти величину КОСИНУСА угла C исходного треугольника (противолежащего медиане);

2^2 = 1^2 + (корень(15)/2)^2 - 2*1*(корень(15)/2)*cos(C);

cos(C) = 3/(4*корень(15));

Теперь ничто не мешает вычислить третью сторону по той же теореме косинусов.

с^2 = 1^2 +(корень(15))^2 - 2*1*корень(15)*cos(C) = 1 + 15 - 2*3/4 = 29/2;

c = корень(14,5); P = 1 + корень(15) + корень(14,5)

Получился почти равнобедренный треугольник

 

4,5(53 оценок)
Ответ:
Kaska322
Kaska322
28.05.2023

Поскольку расстояния до хорд одинаковой длины в окружности равны (вообще, d^ + (h/2)^ = R^2; где d - расстояние до хорды, h - ее длина), то БЕЗ ПОТЕРИ ОБЩНОСТИ можно свести концы дуг(хорд), то есть считать, что точки N и Р совпадают, а треугольник MP(N)Q - прямоугольный. В самом деле, равной дуге соответствует равная хорда, => и расстояние до неё такое же.

В треугольнике MPQ ОН средняя линяя (раз треугольник прямоугольный - ОН II PQ, и О - середина MQ), поэтому ОН = PQ/2;

 

Можно всё это рассказывать и "с конца" :)) от точки P отложим дугу (а значит, и хорду), равную MN, конец обозначим за M1. Далее по тексту, доказывается, что ОН1 (перпендикуляр на РМ1) равен PQ/2; но ОН1 = ОН (в начале есть формула связи длины хорды и расстояния до нее:)), чтд. 

 

Оба решения совершенно одинаковы, но отличаются противоположным порядком изложения :)))

4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ