∠1 = 60°; ∠2 = 120°; ∠3 = 60°; ∠4 = 120°.
Объяснение:
Диагонали ромба в точке пересечения делятся пополам и соответственно равны:
2/2 = 1 и 2√3/2 = √3
Так как диагонали ромба пересекаются под углом 90°, то в прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, сторона ромба (как гипотенуза) равна:
с = √(1² + (√3)²) = √(1+3) = 2
Так как один из катетов прямоугольного треугольника в 2 раза меньше гипотенузы, то это значит, что противолежащий ему угол равен 30°, а так как диагонали ромба являются биссектрисами его углов, то первый угол ромба равен:
30 · 2 = 60°.
Сумма углов, прилежащих к одной стороне ромба, равна 180°, следовательно, второй угол равен:
180 - 60 = 120°.
Противолежащие углы ромба равны, поэтому:
если ∠1 = 60°, а ∠2 = 120°, то ∠3 = 60°, а ∠4 = 120°.
ответ: ∠1 = 60°; ∠2 = 120°; ∠3 = 60°; ∠4 = 120°.
Объяснение:
1) Чтобы вокруг четырехугольника можно было описать окружность, сумма противоположных углов должна быть равна 180 градусов.
а) Если углы последовательно равны 90,90,60,120, то противоположными будут углы 90 и 60, 90 и 120. Ни то ни другое в сумме не даёт 180, значит ответ нет.
б) То же самое. Противоположными будут углы 40 и 55, 125 и 140. Ни то ни другое в сумме не даёт 180, значит ответ нет.
2) Радиус описанной вокруг прямоугольника окружности будет равен половине диагонали r=1/2*√(8²+6²)=1/2*√(64+36)=5см
Свойство: у параллелограмма противолежащие стороны равны.
Значит, полупериметр (сумма двух сторон) = 20:2=10см
Большая сторона = хсм, тогда меньшая = х-3см.
Составим и решим уравнение:
х+(х-3)=10
2х=13
х=6,5см
Это большая сторона.
ответ: 6,5см - большая сторона.