Обозначим через D середину АС и проведем через эту точку перпендикуляр к АС. Пусть этот перпендикуляр пересекается с прямой АВ в точке В1, а с прямой СВ в точке В2. Тогда по второму признаку треугольники АDВ1 и СDВ2 равны, поскольку АD = СD , углы B1АD и В2СD равны по условию, а равенство углов В1DА и В2DС следует из этого, что В1 и В2 лежат на перпендикуляре к АС, проходящем через D. Таким образом, DВ1 = DВ2 , точки B1 и В2 должны совпасть друг с другом, а значит, совпасть с точкой В. Следовательно, АВ = СВ.
Перший невідомий х =( -(-4) + 28)/(2*2) = (4+28)/4 = 32/4 = 8
Другий невідомий х =( -(-4) - 28)/(2*2) = (4 - 28)/4 = -24/4 = -6 Даний невідомий менший за нуль, тому його відкидаємо, оскільки довжина сторони не може бути від'ємною