Поскольку AM перпендикулярна пллоскости квадрата, то она перпендикулярна любой прямой, лежащей в этой плоскости. В частности, AM перпендикулярна сторонам квадрата.Расстоянием от точки M до вершины B есть отрезок MB. Рассмотрим прямоугольный ΔAMB(<MAB = 90° - по сказанному выше). AB = BC = 12 как стороны квадрата, AM = 5. По теореме Пифагора,MB = √(AM² + AB²) = √(144+25) = √169 = 13. Итак, расстояние от точки M до вершины квадрата B равно 13 см. Расстояние от точки M до вершины A есть отрезок MA и равно 5 см.Найдём расстояние от точки M до вершины C(отрезок MC). Для этого проведём диагональ AC квадрата. Тогда по определению, MA перпендикулярна AC, то есть <MAC = 90°. Рассмотрим прямоугольный треугольник MAC, где AC - диагональ квадрата. MA = 5 см. Диагональ квадрата вычисляется по формуле AC = a√2, где a - длина стороны квадрата. AC = 12√2 см. по теореме Пифагора, MC = √(MA² + AC²) = √(25 + 288) = √313 см - это расстояние от точки M до вершины C.Ну и аналогично находим расстояние от точки Mдо вершины D. Для этого надо рассмотреть прямоугольный треугольник MAD и по теореме Пифагора найти гипотенузу MD. этот отрезок и является расстоянием от точки M до врешины D. Задача решена.
Ну смотри у тебя есть треугольник abc в нем допусти угол b=120 градусам. угол HBA смежный с углом АВС и равен 180-120=60 градусов. треугольник НВА прямоугольный тк АН высота значит угол НАВ равен 90-60=30 градусов. Тк треугольник НВА прямоугольный и угол НАВ равен 30 градусов то АН = 1/2*АВ значит АВ=9*2=18. так как треуголник АВС равнобедренный то АВ=ВС=18. треугольник АНВ прямоугольный значит по теореме Пифагора AB^2=HB^2+AH^2 HB^2=AB^2-AH^2 HB^2=324-81=243 HB=√243 HC=HB+BC=18+√243 треугольник АНС прямоугольный значит по т Пифагора AC^2=AH^2+HC^2 AC^2=81+(18+√243)^2 AC=√(81+(18+√243)^2)) как то так теперь еще хуже:D
ответ : угол ВАО = 70градусов