1)Если диагонали трапеции взаимно перпендикулярны, то ее площадь равна полупроизведению диагоналей.S=56. Можно вывести.ПУстьABCD трапеция, а т.О пересечение диагоналей, тогда S=AO*BD/2+CO*BD/2=BD/2*(AO+OC)=(BD*AC)/2
2)ABCD трапеция. тогда боковые стороны будут по 13 см. А так как в трапецию вписана окружность, сумма оснований =26. S=(AD+BC)*H/2=13*H.Найдем висоту трапеции.Расстояние от точки B до точек касания =4.от т.A до точек касания 9( аналогично от двух других вершин0. получаем BC=8, AD=18.Опусти две высоты и найды по т.Пифагора высоту трапеции,получаем 12 и тогда S=13*12=156
В условии ошибка. Если сторона квадрата 24, то его диагональ 24√2 ≈ 34. Тогда в треугольнике ASC сторона АС больше суммы двух других сторон: 34 > 13 + 13, т.е. треугольник с такими сторонами не существует.
Встречается такая же задача с другими данными:
Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.
Пирамида правильная, значит в основании лежит квадрат, а боковые грани - равные равнобедренные треугольники.
Проведем SH⊥CD. Тогда CH = HD (треугольник SCD равнобедренный).
CH = HD = 1/2 CD = 5.
ΔSCH: ∠SHC = 90°, по теореме Пифагора:
SH = √(SC² - CH²) = √(169 - 25) = √144 = 12
Sпов = Sосн + Sбок
Sосн = AD² = 10² = 100
Sбок = 1/2 Pосн · SH = 1/2 · 10 · 4 · 12 = 240
Sпов = 100 + 240 = 340 ед. кв.