Сторона MP^2 равна по теореме пифагора: (Mx-Px)^2+(Му-Ру)^2= (-4-2)^2+(3-7)^2=(36+16)=52
Сторона МТ^2 равна по теореме пифагора ( Мх-Тх)^2+(Му-Ту)^2=(-4-8)^2+(3+2)^2=144+25=169
Сторона РТ^2 равна по теореме Пифагора (Рх-Тх)^2+(Ру-Ту)^2=(2-8)^2+(7+2)^2=36+81=117
Отсюда получаем что по теореме Пифагора для прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Находим гипотенузу это самая большая сторона соответсвенно это сторона МТ
тогда МТ^2=РТ^2+МР^2 подставляем значения получаем 169=117+52 => 169=169 так как сумма квадратов катетов рана квадрату гипотенузы значит этот треугольник прямоугольный
Пусть в равнобедренном треугольнике АВС с основанием AB: АС=СВ=a, AB=b. <A=<B, SinA=SinB=1/4. Тогда CosB=√(1-1/16)=√15/4. По теореме косинусов из треугольника АВС имеем: a²=a²+b²-2abCosB или 0=b²-2*16√15*b*√15/4 или b²-120b=0. b1=0 - не удовлетворяет условию. b=120. Площадь треугольника АВС равна: (1/2)*a*b*sinA или Sabc=(1/2)*16√15*120*0,25=240√15. С другой стороны Sabc=(1/2)*a*h, где а - сторона ВС, h - высота АН, проведенная к этой стороне. Тогда АН=2Sabc/a или АН=480√15/(16√15)=30. ответ: АН=30.
P.S. Заметим, что треугольник АВС - тупоугольный, так как синус угла при основании равен 0,25 => угол ≈14,5°.
<(ac)=<(bc)=<(ab)/2
<(ad)=<(dc)=<(ac)/2
<(bd)=<(bc)+<(dc)
ответ:
<(bd)=60°