М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MariaSet010203
MariaSet010203
11.06.2020 18:06 •  Геометрия

Докажите,что точки а(4; 2), в(5; 7), с(-3; 4), д(-4; -1)являются вершинами параллелограмма авсд

👇
Ответ:
fhtyf
fhtyf
11.06.2020
Решение во вложении--------------------
Докажите,что точки а(4; 2), в(5; 7), с(-3; 4), д(-4; -1)являются вершинами параллелограмма авсд
4,8(61 оценок)
Открыть все ответы
Ответ:
ddddsfvxsf
ddddsfvxsf
11.06.2020

1 б,в

2Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, <А=<А_1

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

3

Логин

Пароль

Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

\boxtimes

Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.

4 х-основание

х+х+3+х+3=36

3х=30

х=10

10+3=13 см-боковые стороны

4,6(14 оценок)
Ответ:
akon1708
akon1708
11.06.2020

1.Точка С - середина отрезка АВ. Найдите координаты точки А, если В(3;4), С(2,1)   2.Найти расстояние между точками А(1; 2) и В( - 3; 4) 3.Определить вид треугольника, вершины которого А(- 3; - 1), В(- 1; 5),С(5; 3)

Объяснение:

1)х(А)=2х(С)-х(В) , х(А)=2*2-3=1 ,

 у(А)=2у(С)-у(В) , у(А)=2*1-4=-2 , А(1; -2)

2)АВ=√(4²+2²)=√20=2√5.

3)А(- 3; - 1), В(- 1; 5),С(5; 3)

АВ=√(4+36)=√40  , ВС=√(36+4)=√40 ⇒ΔАВС-равнобедренный , т.к. АВ=ВС

АС=√(64+16)=√80. Проверим т.обратную т. Пифагора АВ²+ВС²=40+40=80 и АС²=80 ⇒ΔАВС-равнобедренный , прямоугольный.

d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.

Теорема, обратная теореме Пифагора : если квадрат длины стороны треугольника равен сумме квадратов длин двух других сторон, то такой треугольник прямоугольный.

4,8(7 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ