1) правильная четыхугольная призма- в основании квадрат, боковые стороны перпендикулярны основанию. сечение, которое проходит через ребро AA1 и вершину С- прямоугольный треульник A1AC, найдем сторону AC=4sqrt2 прощадь треульльника=1/2*высота*основание=1/2*5*4sqrt2=10sqrt2
2)правильная трехугольная призма- в основании правильынй треульник, боковые стороны перпендикулярны основанию. диагональ бок.грани под углом 60градусов, треугольник ABB1-прямоугольный=> 1/2=3/AB1 (AB1-диагональ бок.грани)=> AB1=6 находим боковое ребро: 6=3+BB1^2 (Т.Пифагора)=> BB1=sqrt3 площадь бок.поверхности призмы=3(BB1*AB)=3*sqrt3*3=9sqrt3
У ромба все стороны равны, диаганоли схрещиваются перпендикулярно и делят друг друга пополам, из-за чего он делится на 4 прямоугольных треугольника, где половинки этих диагоналей - катеты. Так как эти диагонали равны, то и катеты у всех треугольников равны. Из этого имеем, что треугольники равнобедренные, а значит углы при их основе равны между собой и равняются 45°. Так как диагонали ромба делят его углы напополам, то все его углы равны 45° + 45° = 90°. То есть, мы имеем четырехугольник, у которого все стороны равны, а все углы равняются 90°. Значит это квадрат.
АС=АС1 * cosС1АС = 4*корень3/2=2*корень3
Треугольник АВС равносторонний, площадь его=АС в квадрате * корень3/4=
=(2*корень3) в квадрате * корень3/4 = 3*корень3
Объем призмы= площадь основания * высота = 3*корень3 * 2=6*корень3