1)наидите углы которые образуют диагонали ромба с его сторонами если один из углов равен 45 градусов
пусть <В=45 град
тогда противоположнве углв попарно равны <D=<B=45
сумма односторонних углов = 180 град
<A+<B=180 , тогда <A=180-45=135, тогда <C=<A=135
диагонали ромба являются бисектриссами углов ромба, т е делят их пополам
<A /2=135/2=67,5 град = 67 град 30 мин
<C - также как А
<B/2 = 45/2=22,5 град = 22 град 30 мин
<D - также как В
2)наидите периметр ромба ABCD ,если <B=60градусов.AC=10.5см
у ромба все стороны равны
значит АВ=ВС
значит треуг АВС - равнобедренный (углы приосновании АС равны)
Тогда <A = <C = (180-<B)/2=(180-60)/2=60
то есть треугольник к тому же правильный
углы все 60 град -- а знчит и стороны все равны
АВ=ВС=АС=10.5см
у ромба все стороны равны
АВ=ВС=АС=10.5см=AD=DC
Периметр p=4*10.5=42см
1)наидите углы которые образуют диагонали ромба с его сторонами если один из углов равен 45 градусов
пусть <В=45 град
тогда противоположнве углв попарно равны <D=<B=45
сумма односторонних углов = 180 град
<A+<B=180 , тогда <A=180-45=135, тогда <C=<A=135
диагонали ромба являются бисектриссами углов ромба, т е делят их пополам
<A /2=135/2=67,5 град = 67 град 30 мин
<C - также как А
<B/2 = 45/2=22,5 град = 22 град 30 мин
<D - также как В
2)наидите периметр ромба ABCD ,если <B=60градусов.AC=10.5см
у ромба все стороны равны
значит АВ=ВС
значит треуг АВС - равнобедренный (углы приосновании АС равны)
Тогда <A = <C = (180-<B)/2=(180-60)/2=60
то есть треугольник к тому же правильный
углы все 60 град -- а знчит и стороны все равны
АВ=ВС=АС=10.5см
у ромба все стороны равны
АВ=ВС=АС=10.5см=AD=DC
Периметр p=4*10.5=42см
Пусть сторона треугольника равна x, поскольку треугольник равносторонний, то
x^2-(x/2)^2=(12)^2
x^2-x^2/4=144
3x^2/4=144
x^2=192
x=8*sqrt(3) – сторона треугольника
Равностороний треугольник, образованний средними линиями будет иметь стороны
Равными 8*sqrt(3)/2=4*sqrt(3). Высота этого треугольника равна из теоремы Пифагора
h^2= (4*sqrt(3))^2-(4*sqrt(3)/2)^2=48-12=36
h=6
S=a*h/2 = 4*sqrt(3)*6/2=12*sqrt(3)