На основах ab і cd трапеції abcd позначено точки k і l. нехай e - точка перетину відрізків al і dk, f - точка перетину bl і ck. довести, що чума площ трикутників ade і bcf дорівнює площі чотирикутника ekfl.
Рисунок по условию. S(ΔDAL)=S(ΔDKL) т к у них общее основание DL и одинаковая вΔысота (отрезок перпендикуляра, заключенного между параллельными прямыми AB и DC). каждая из этих площадей имеет общую часть - S(ΔDEL), значит S(ΔDAЕ)=S(ΔEKL). Аналогично, S(ΔCKL)=S(ΔCBL) c общей частью (ΔCFL), значит S(ΔLKF)=S(ΔCBF). S(ΔDAЕ)+S(ΔCBF)=S(ΔEKL)+ S(ΔLKF)=S(EKFL)
Нарисуй прямоугольник авсd. проведи две диагонали ас и вd. отметь центр буквой о. и начерти от "о" до каждой стороны по короткому отрезку.. так как пересечение диагоналей произойдет в центре прямоугольника, то отсюда следует, что можно просто сложить эти короткие отрезки и найти стороны. ав=10+10=20см и так как они параллельны сd , то соответственно равны между собой по свойству прямоугольника. вc=10+10=20см и так как они параллельны аd , то соответственно равны между собой по свойству прямоугольника. периметр равен 2(аb+bc)=2(20+20)=80. ответ: р=80.
Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12
S(ΔDAL)=S(ΔDKL) т к у них общее основание DL и одинаковая вΔысота (отрезок перпендикуляра, заключенного между параллельными прямыми AB и DC). каждая из этих площадей имеет общую часть - S(ΔDEL),
значит S(ΔDAЕ)=S(ΔEKL).
Аналогично, S(ΔCKL)=S(ΔCBL) c общей частью (ΔCFL),
значит S(ΔLKF)=S(ΔCBF).
S(ΔDAЕ)+S(ΔCBF)=S(ΔEKL)+ S(ΔLKF)=S(EKFL)