∠А = 55°
Объяснение:
ВМ является медианой, следовательно АМ = МС - согласно условию задачи.
Но так как АМ = ВМ (также согласно условию задачи), то МС = ВМ, в силу чего треугольник ВМС - равнобедренный и ∠МВС = ∠С =35°.
Следовательно, угол ВМС равен:
180 - 35 - 35 = 110°.
Из этого следует, что в треугольнике АВМ угол АМВ, смежный с углом ВМС, равен:
180 - 110 = 70°.
Треугольник АВМ также является равнобедренным, т.к. АМ = ВМ, и если угол при его вершине равен 70°, то углы при основании (∠А и ∠АВМ) равны:
∠А = ∠АВМ = (180 - 70) : 2 = 110 : 2 = 55°
ответ: ∠А = 55°
1. Пусть х - один из вертикальных углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Вертикальные углы равны, тогда 2х - сумма двух вертикальных углов.
Получаем уравнение:
2x + 30° = 180° - x
3x = 150°
x = 50°
ответ: каждый из двух вертикальных углов равен 50°.
2. Пусть х - один из углов, тогда угол, смежный с ним 180° - х, так как сумма смежных углов равна 180°.
Получаем уравнение:
1/8 x + 3/4 (180° - x) = 90° |· 8
x + 6 (180° - x) = 720°
x + 1080° - 6x = 720°
5x = 360°
x = 72° - один из смежных углов.
180° - 72° = 108° - второй угол.
Разность данных углов:
108° - 72° = 36°
ответ: 36°.
3. ∠1 + ∠2 + ∠3 - ∠4 = 280° по условию задачи.
∠1 = ∠3 и ∠2 = ∠4 как вертикальные, значит
2 · ∠1 = 280°
∠1 = 140°
∠3 = ∠1 = 140°
∠2 = 180° - ∠1 = 180° - 140° = 40°, так как ∠2 и ∠1 смежные, а сумма смежных углов равна 180°.
∠4 = ∠2 = 40°
ответ: 40°, 40°, 140°, 140°.