Управильной треугольнольной пирамиды сторона основания равна 10 см, а угол между плоскостью боковой грани и плоскостью основания равен 60 градусов. найдите всю площадь пирамиды.
S O K Пирамида правильная, значит в основании лежит равносторонний треугольник. По условию задачи сторона правильного треугольника a = 10 см Найдём радиус вписанной в равносторонний треугольник окружности: ОК = (см) где р – периметр основания, l – апофема По условию задач, боковая грань наклонена к плоскости основания под углом в 600 , значит в треугольнике SOK линейный угол <SKO = 600 ; Апофема SK = I = H : sin + ответ:
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Рассмотрим условие а)сумма двух его противоположных углов равна 94 градуса. То есть ∠А+∠С=94° а поскольку ∠А=∠С, значит ∠А=∠С=94°/2=47°.
∠А+∠В+∠С+∠Д=360° и ∠В=∠Д, значит 47°+∠В+47°+∠Д=360° ∠В+∠Д=360°-94° 2∠В=266° ∠В=∠Д=266°/2 ∠В=∠Д=133°
ответ: при условии а) ∠А=∠С=47° и ∠В=∠Д=133°.
Рассмотрим условие б)разность двух из них равна 70 градусов
Поскольку противоположные углы равны у параллелограмма, значит разность противоположных углов равна 0°. Выходит, что 70° это разность между двумя соседними углами, то есть ∠В-∠А=70°. Допустим, что ∠А=Х°, значит ∠А=∠С=Х° ∠В=∠Д=Х°+70°
∠А+∠В+∠С+∠Д=360° х+(х+70)+х+(х+70)=360° 4х+140°=360° 4х=220° х=220°/4 х=55° То есть ∠А=∠С=Х°=55° ∠В=∠Д=Х°+70°=55°+70°=125°
Пирамида правильная, значит в основании лежит равносторонний треугольник. По условию задачи сторона правильного треугольника a = 10 см Найдём радиус вписанной в равносторонний треугольник окружности: ОК = (см) где р – периметр основания, l – апофема По условию задач, боковая грань наклонена к плоскости основания под углом в 600 , значит в треугольнике SOK линейный угол <SKO = 600 ; Апофема SK = I = H : sin + ответ: