Х=0 это ось оу, у=0 - это ось ох. 4х-3у-24=0 построим данную прямую. -3у=24-4х=-8+4х/3 или у= 4х/3-8. это уравнение прямой, которая задается двумя точками. при х=0 у=-8 при х=3 у=-4. эта прямая находится в 4 четверти. провели декартову прямоугольную систему координат, навели более жирным положительную ось ох, відємну ось оу, и по координатам которые мы нашли построили третью прямую. образовался прямоугольный треугольник. его диаметр=4, поскольку диаметр по правилу= от суммы катетов надо - гипотенузу. координаты центра(2;-2). уравнение окружности (х-2) в квадрате+ (у+2)в квадрате =4.
Центральный угол, опирающийся на дугу 90°, равен 90°. Следовательно, треугольник АОВ прямоугольный. Высота из прямого угла к гипотенузе равна половине этой гипотенузы. Значит МО=5см. Расстояние между двумя параллельными прямыми - это перпендикуляр, опущенный из любой точки одной прямой на другую. Продолжим высоту (перпендикуляр) МО до пересечения с хордой СD в точке N. ОN - высота прямоугольного прямоугольника COD, равного треугольнику АОВ (по двум катетам - радиусам). Значит OM=ON=5см, а MN=10см. Отвкт: расстояние между хордами равно 10см.