М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
айка395
айка395
27.09.2022 04:40 •  Геометрия

Доказать что треугольник abc равнобедренный

👇
Ответ:
pipinkorotkiy1
pipinkorotkiy1
27.09.2022

сама

4,8(19 оценок)
Открыть все ответы
Ответ:
zhenya214
zhenya214
27.09.2022

Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть

c2 = a2 + b2,

где c — гипотенуза треугольника.

Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:

a = c cos β = c sin α = b tg α = b ctg β,

где c — гипотенуза треугольника.

Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:

h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.

Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула

a2 = b2 + c2 – 2bc cos α.

Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).

Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения

Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).

Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.

Теорема 8 (формулы для вычисления площади треугольника).

4

Последняя формула называется формулой Герона.

Теорема 9 (теорема о биссектрисе внутреннего угла).

Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть

b : c = x : y.

Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)

.

Теорема 11 (формула для вычисления длины биссектрисы).

Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).

Теорема 13 (формула для вычисления длины медианы).

Доказательства некоторых теорем

Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:

4,6(2 оценок)
Ответ:
диана2459
диана2459
27.09.2022

При пересечении двух прямых образуется 4 угла, обозначим через 1,2,3,4 по часовой стрелке.

1) угол 1 + угол 2 не может равняться 70 градуас, т.к. они смежные, значит угол 1+угол 3 = 70 градусов, т.к. эти углы вертикальные, то угол 1 = 70:2=35 градусов. Тогда угол 2 = 180-угол 1 (по свойству смежных углов), угол 2 = 180-35=145 градусов.

ответ: 35 и 145.

2) Пусть угол 1 = 3 угла 2. Так как эти углы смежные, то по свойству смежных углов: угол 1 + угол 2 = 180,

3 угла 2 + угол 2 = 180

4 угла 2 = 180,

угол 2 = 45 градусов.

Тогда угол 1 равен 180-45=135

ответ 45 и 135.

3) угол 1 = угол 2 -35, тогда угол 2 - 35 + угол 2 = 180

2 угла 2 = 215

угол 2 = 107 градусов 30 минут,

угол 1 = 180 градусов - 107 градусов 30 минут = 72 градуса 30 минут

4,7(33 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ