Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.
Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.
Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри треугольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).
Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения
Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).
Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.
Теорема 8 (формулы для вычисления площади треугольника).
4
Последняя формула называется формулой Герона.
Теорема 9 (теорема о биссектрисе внутреннего угла).
Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.
Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)
.
Теорема 11 (формула для вычисления длины биссектрисы).
Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).
Теорема 13 (формула для вычисления длины медианы).
Доказательства некоторых теорем
Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:
При пересечении двух прямых образуется 4 угла, обозначим через 1,2,3,4 по часовой стрелке.
1) угол 1 + угол 2 не может равняться 70 градуас, т.к. они смежные, значит угол 1+угол 3 = 70 градусов, т.к. эти углы вертикальные, то угол 1 = 70:2=35 градусов. Тогда угол 2 = 180-угол 1 (по свойству смежных углов), угол 2 = 180-35=145 градусов.
ответ: 35 и 145.
2) Пусть угол 1 = 3 угла 2. Так как эти углы смежные, то по свойству смежных углов: угол 1 + угол 2 = 180,
3 угла 2 + угол 2 = 180
4 угла 2 = 180,
угол 2 = 45 градусов.
Тогда угол 1 равен 180-45=135
ответ 45 и 135.
3) угол 1 = угол 2 -35, тогда угол 2 - 35 + угол 2 = 180
2 угла 2 = 215
угол 2 = 107 градусов 30 минут,
угол 1 = 180 градусов - 107 градусов 30 минут = 72 градуса 30 минут
сама