эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.
представь, что ты вдруг очутился на другой планете, ну или… в компьютерной игре.
перед тобой набор неизвестных продуктов, а твоя – приготовить из этого набора как можно больше вкусных блюд. что тебе понадобится? конечно же, правила, инструкции – что можно делать с теми или иными продуктами. а то вдруг ты сваришь то, что едят только в сыром виде или, наоборот, положишь в салат то, что непременно нужно варить или жарить? так что, без инструкций – никуда!
хорошо, но к чему такое вступление? причем тут ? понимаешь, великое множество утверждений о всяких фигурах в и есть то самое множество «блюд», которые мы должны научиться готовить. но из чего? из основных объектов ! а вот инструкция по их «употреблению» называется умными словами«система аксиом».
так что, внимание!
основные объекты и аксиомы планиметрии.
точка и прямая
это и есть самые главные понятия планиметрии. говорят, что это «неопределяемые понятия». как так? а вот так, нужно же с чего-то начинать.
теперь первые правила обращения с точками и прямыми. эти правила называют «аксиомы» - утверждения, которые принимаются за основу , из которых потом все основное будет выводиться (помнишь, что у нас большая кулинарная миссия по «приготовлению» так вот, первая серия аксиом называется
Трикутники рівні, значить MN = KR = 25 см.
KS = периметр мінус сума двох сторін. KS = P - MN + RS = 60 - 25 + 16 = 19 (см)