Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
Смотрим образовавшийся прямоугольный (т.к. медиана в равностороннем треугольнике является и высотой, и биссектрисой) треугольник: Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе): cos 30=√3/2 √3/2=9√3/x √3х=18√3 х=18 (см) - сторона треугольника. Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.
Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС:
угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС)
далее возьмем прямоугольный треугольник АНС где АН- высота:
угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30
тогда угол НАС равен
180-90-30=60
АН=2
найдем сторону НС:
по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3=
2 корня из 3
окей, далее найдем АС она же является диагональю трапеции:
АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4
готово, осталось посчитать:
S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате