ответ:Рисунок 1.47
Угол В вписанный,равен 90 градусов,опирается на дугу 180 градусов
Угол К вписанный,опирается на дугу
180+40=220 градусов и равен половине ее градусной меры
<В=110 градусов
Рисунок 1.48
Угол В вписанный,опирается на дугу
360-(120+80)=160 градусов
<АВD опирается на дугу
160:2=80 градусов
На эту же дугу опирается центральный угол АОD и равен ее градусной мере
<АОD=80 градусов
Рисунок 1.49
Радиус и касательная образуют угол 90 градусов.
Дуга ВСА равна 180 градусов,т к диаметр делит окружность пополам
360:2=280 градусов
Угол АВС вписанный и опирается на дугу в два раза больше его градусной меры
59•2=118 градусов
Угол ВАС опирается на дугу
180-118=62 градуса
он вписанный и равен половине градусной меры дуги
62:2=31 градус
Рисунок 1.50
<Р вписанный и равен половине дуги,на которую он опирается
Дуга равна
АЕ=55•2=110 градусов
< К=(110-40):2=35 градусов
Рисунок 1.51
<D вписанный,равен половине дуги,на которую он опирается
Дуга равна
50•2=100 градусов
Дуга FDG=360-100=260
<TFG=260:2=130 градусов
Объяснение:
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠DBC = 90° - 70° = 20°
Так как BD - биссектриса => ∠АВС = 20° × 2 = 40°
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠BAD = 90° - 40° = 50°
ответ: 50°.
Задача#2.Очевидно, что во 2 задаче опечатка.На рисунке написано 0,4 дм, а в дано 0,4 см.
Очевидно, что правильно - 0,4 дм.
1 дм = 10 см
0,4 дм = 4 см
Рассмотрим ∆АКВ и ∆СFD:
KB = FC, по условию.
АВ = CD, по условию.
=> ∠AКВ = ∠CFD, по катетам.
=> АК = DF.
Ч.Т.Д.
Задача#3.Рассмотрим ∆ABD и ∆DBC:
∠ABD = ∠CBD, по условию.
BD - общая сторона.
Так как ∠ADE = ∠CED => ∠ADB = ∠CDB, так как сумма смежных углов равна 180°.
=> ∆ABD = ∆DBC, по 2 признаку равенства треугольников.
=> АВ = СВ = 21 см.
ответ: 21 см.