По определению хорда МР и диаметр КЕ - отрезки, соединяющие точки окружности. Следовательно, они могут образовать искомый угол только пересекаясь внутри окружности, имея одну общую точку, например, Н. КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°. ответ: 127°
Сначала докажем, что если окружность описана около прямоугольного треугольника, то ее центр лежит на гипотенузе. пусть, дан треугольник АВС с прямым углом С пусть, точка О-центр описанной окружности. рассмотрим следующие треугольники: ВОС-равнобедренный, ∠ОВС=∠ОСВ, АОС-равнобедренный, ∠ОАС=∠ОСА но сумма углов ВСО и АСО=90°, значит, сумма углов САО + СВО=ВСО +АСО=90° Сумма углов выпуклого четырехугольника =360°,значит, АОВ=360-90-90=180°, то есть развернутый угол Кроме того, ОВ=ОА, поскольку О-центр окружности
задача1 АС = 12 см, ВС = 5 см; АВ=√(СВ²+АС²)=√(144+25)=13 см ОА=ОВ=13:2=7,5 см.
задача2. АС = 16 см, ∠В = 30°. АВ=16:sin30°=16:0,5=32 ОА=ОВ=32:2=16 см
Длина наибольшей дуги равна 14π см или ≈ 44 см
Объяснение:
Длина окружности C = 2πR = 30π см
Поделена на n частей n = 3 + 5 + 7 = 15
Одной части соответствует дуга длиной х = С : n = 30π : 15 = 2π (см)
Наибольшая дуга имеет длину 7х = 14π (см) ≈ 43,982 см) ≈ 44 см