Пусть С - начало координат
Ось X - CB
Ось Y - Перпендикулярно X в сторону A
Ось Z - СС1
1)
Координаты точек
D (√13;0;√13/2)
N(3√13/4;√39/4;√13)
Вектора
СD ( √13;0;√13/2)
DN( -√13/4;√39/4;√13/2)
CD*DN = -13/4 + 13/4 =0 - перпендикулярны.
2)
Уравнение плоскости
BCC1
y=0
Уравнение плоскости
CDN
ax+by+cz=0
подставляем координаты точек D и N
√13a + √13c/2 =0
3√13a/4 + √39b/4 + √13c =0
Пусть a=1 тогда с = -2 b= 5√3/3
Уравнение
x +5√3y/3 - 2z =0
Косинус искомого угла
5√3/3 / √(1+25/3+4) = √(5/8)
Синус √(3/8)
Тангенс √(3/5)= √15/5
1. 60, 2. 13.
Объяснение:
1. ∠М= 180-∠А-∠L=180-43-77=60 (по т. о сумме углом треугольника)
2. 90-77=13 (т.к. сумма острых углов прямоугольного треугольника равна 90 )