драпежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасаты
Через катет прямоугольного равнобедренного треугольника проведена плоскость, которая образует с плоскостью треугольника угол 60°. Найдите углы, которые образуют 2 другие стороны треугольника с этой плоскостью.
Обозначим треугольник АВС. АС=ВС, угол С=90°
Проведенная плоскость и плоскость треугольника образуют двугранный угол, линейным углом которого являются два перпендикуляра к его ребру в точке С.
Угол АСВ - прямой, ⇒АС- перпендикуляр в плоскости треугольника к линии пересечения плоскостей, НС - перпендикуляр, проведенный в проведенной плоскости к той же линии.
Угол АСН =60°
АН - перпендикуляр к плоскости, НВ - проекция гипотенузы АВ на плоскость.
Угол АВН - искомый.
В равнобедренном прямоугольном треугольнике острые углы равны 45°.
Примем катеты ∆ АВС равными а. Тогда гипотенуза
АВ=а:sin 45°=a√2
АН=а•sin60°=a√3/2
sinАВН=АН:АВ=a√3/2):a√2=0,61237
Это синус угла ≈37,76°
Объяснение:
ответ :угол ABD=42°
Объяснение:
Проведем биссектрису угла АЕД до пересечения с продолжением высоты ( медианы, биссектрисы) равнобедренного ∆ АВД в т.Н.
Угол ВЕН=69°+42°:2=90°, ВН - диаметр окружности, описанной около прямоугольного ∆ ВЕН. АН=DH по свойству диаметра, проведенного перпендикулярно хорде.
Точки А, В, Е, D и Н лежат на окружности. Угол АВН=углу АЕН=42°:2 - вписанные и опираются на одну хорду АН. Поэтому
угол АВD=2•ABH=42°.