Медиана, проведённая из вершина, образовала 2 треугольника. Докажем их равенство: боковые стороны равны, углы при основании тоже( треугольник равнобедренный), медиана делит сторону на два равных отрезка. Следовательно по первому признаку треугольники равны. Следовательно углы, образованные при вершине, тоже равны ( как соответственные элементы) , а значит это биссектриса; углы, образованные медианой при основании тоже равны, они являются смежными, а значит в сумме дают 180 градусов; значит каждый из них равен 90 градусов, следовательно - высота
Пирамида имеет в основании квадрат или правильный треугольник?
1. поверхность грани 96/4=24 длина стороны основания 24/4=6 апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8 0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально - пусть n боковых граней, s = 96/n сторона основания 24/n 0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.
Відповідь:
81√3 см^2
Пояснення: