Проведите окружность с центром в точке М и радиусом, равным
а. Она пересечет ∠BAC в одной точке (если расстояние от М до одной из сторон угла равно а, а до другой больше, чем а, или окруж ность проходит через точку b), или в 2-х точках (расстояние от точ ки М до сторон угла равно a или до одной стороны меньше, а до другой больше), или в 3-х точках (расстояние от точки М до одной из сторон угла равно a, а до другой меньше или расстояние от точки М до обеих сторон угла меньше a, но окружность проходит через точку b), или в четырех точках (расстояние от точки М до обеих сторон угла меньше a).
Вроде так, надеюсь правильно :)
Sqrt-корень квадратный
Высота разделяет основание на 2 равные части и угол основание высоты равен 90 градусов.
Выплывает 2 треугольника: ABK и BKC, они равны.
Возьмем треугольник BKC(угол K=90,KC=3x,BC=11x).За теоремою Пифагора: 1764+9x^2=121x^2; 1764=112x^2;x^2=15,75;x=Sqrt(15,75)
r=S/p(p-полупериметр)
S=1/2*b*h=1/2*6*Sqrt(15,75)*42=126*Sqrt(15,75);
p=11*Sqrt(15,75)+11*Sqrt(15,75)+6*Sqrt(15,75)/2;
r=126*Sqrt(15,75)/11*Sqrt(15,75)+11*Sqrt(15,75)+6*Sqrt(15,75)/2
r=252*Sqrt(15,75)/11*Sqrt(15,75)+11*Sqrt(15,75)+6*Sqrt(15,75)
CD = 5
Объяснение:
Из вершины С нужно опустить высоту СН, она будет равна АВ, т.е. 4.
AH = 7, DH = AD - AH = 10 - 7 = 3.
Треугольник CDH - прямоугольный, в к-ом CD - гипотенуза, СН и DH - катеты. По теореме Пифагора находим CD:
CD^2 = CH^2 + DH^2
CD^2 = 4^2 + 3^2 = 16 + 9 = 25
CD = корень квадратный из 25, т.е. 5.