P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Доказательство: Пусть а1 и а2 - 2 параллельные прямые и плоскость, перпендикулярная прямой а1. Докажем, что эта плоскость перпендикулярна и прямой а2. Проведем через точку А2 пересечения прямой а2 с плоскостью произвольную прямую х2 в плоскости . Проведем в плоскости через точку А1 пересечения прямой а1 с прямую х1, параллельную прямой х2. Так как прямая а1 перпендикулярна плоскости , то прямые а1 и x1перпендикулярны. А по теореме 1параллельные им пересекающиеся прямые а2 и х2 тоже перпендикулярны. Таким образом, прямая а2 перпендикулярна любой прямой х2 в плоскости . А это ( по определению )значит, что прямая а2 перпендикулярна плоскости . Теорема доказана.1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см