Пусть точки, делящие боковую сторону на 3 части называются М и К. Назовем параллельные основаниям прямые ММ1 и КК1. Рассмотрим трапеции АВСД и МВСМ1. Т.к. ММ1 || АД, а АВ - секущая к ним, то углы ДАВ и М1МВ равны. Аналогично доказываем, что угол АДС = ММ1С, значит эти трапеции подобные. Т.к. АК=КМ=МВ=АВ/3, то к-т подобия между трапециями МВСМ1 и АВСД = 1/3, т.е. ММ1:АД=1:3. Отсюда ММ1=14/3.
Аналогично трапеции КВСК1 и АВСД подобны с коэффицциентом 2/3, т.к. КВ:АВ=2:3. Значит КК1:АД=2:3, отсюда КК1=14*2/3=7/3
Объяснение:
Противолежащие углы параллелограмма равны.
Сумма углов прилежащих к одной стороне, равна 180 градусов (по св-ву параллельных прямых).
Пусть <а=х,тогда <в=х+70
Х+х+70=180
2х=180-70
2х=110
Х=55
<а=55 градусов
ответ : 55 градусов