Сечение представляет из себя прямоугольник, одна сторона которого равна высоте цилиндра, а вторая - длина сечения круга (основания цилиндра). Если провести это сечение круга, а потом из центра круга в точки пересечения сечения с окружностью провести радиусы, получится равнобедренный треугольник с двумя сторонами 13 см и высотой 5 см. Проводим в нем высоту и он распадается на два прямоугольных треугольника с гипотенузами 13 см и одним катетом 5 см. Легко посчитать, что второй катет будет 12 см, значит интересующая нас длина сечения будет 12+12=24 см, а площадь сечения цилиндра получится 24*20=480 см²
Чертеж в файле ниже кликай 1. По условию S₁/S₂ = 0,75 => r²/R² = 0,75 r - радиус вписанной окружности R - радиус описанной окружности r² = 0,75R² 2. ΔАОВ - один из секторных треугольников данного многоугольника B ΔAOB AO = BO = R OK ⊥AB OK = r В прямоугольном ΔAOK по теореме Пифагора AK² = AO² - OK² AK² = R² - r² AK² = R² - 0,75R² AK² = 0,25R² √AK² = √(0,25R²) AK = 0,5 R это значит, что катет АК равен половине гипотенузы АО, т.е R Следовательно, <AOK = 30° => < AOB = 60° ΔAOB - равносторонний n = 360° : 60° = 6 n = 6 - это означает, что это шестиугольник 3. P = 12 cм a = 12 : 6 = 2 см - сторона a = R = 2 cм r = √(0,75R²) = R/2√3 r = 2/2 *√3 = √3 ≈ 1,7 cм ответ: шестиугольник n = 6; R = 2 cм r = √3 ≈1,7 cm