?!. Построй какой-нибудь отрезок AB и рав- нобедренный треугольник ABC, один из углов которого: а) 90°; б) 11°; в) 60°; г) 34°; д) 45°; е) 100°. Сколько таких треугольни- ков можно построить в каждом случае (сколь- ко решений имеет задача)?
Длина L бокового ребра пирамиды равна:L = H/sinα = 6/(√2/2) = 6√2 см. б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см². в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.
Якщо даний чотирикутник розділити діагоналлю (наприклад АС) на два трикутники, то якщо з"єднати попарно середини сторін (точки М і N, та К і Р) отримаємо середні лінії трикутників, які паралельні третій стороні, тобто діагоналі, а отже паралельні між собою (МN || KP). Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP. Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.
б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см².
в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.