Доказательство: Пусть даны две прямые a и b. Предположим, что они имеют более одной общей точки - точки M и N. Тогда через две точки M и N проходила бы не одна, а две прямые - прямые a и b. Но это противоречит аксиоме. Конец доказательства.
Что мне не нравится в доказательстве: Хорошо, мы доказали, что две разные прямые не могут иметь две общие точки. Но для меня ситуация выглядит так, что мы доказали только этот частный случай. А если мы возьмем три общие точки или больше? Не похоже, чтобы аксиома запрещяла, чтобы две разные прямые имели три общие точки.
Умом-то я понимаю, что если две прямые имеют более одной общей точки, то они являются одной и той же прямой. Но вот строго доказать, увы, не могу. И мне кажется, что для этого хватит все той же аксиомы. А вся моя проблема проистекает из-за неверного понимания самой аксиомы, которая скорее всего запрещяет и случаи с большим количеством общих точек.
Одно из свойств биссектрисы угла треугольника - она делит противолежащую углу сторону на отрезки, пропорциональные прилегающим сторонам. Пусть высота, проведенная из вершины В, пересекает АС в точке К. Биссектриса угла А пересекает ВК в точке М. Треугольник АВК прямоугольный, угол К в нем прямой. ВК:КМ=5:3 (по условию). Тогда АВ:АК=5:3 (св-во биссектрисы). cosA=AК/АВ=3/5=0,6. sinA=\|(1-0,6^2)=0,8. По теореме синусов ВС/sinA=2R, где R -радиус описанной окружности. R=BC/(2sinA)=8/(2*0,8)=5(см). ответ: 5см.
1) Основание прямого параллелепипеда - ромб. Найдите площадь боковой поверхности параллелепипеда, если площади его диагональных сечений P и Q 2)основание пирамиды - прямоугольный треугольник с катетом 4√3 см. и противолежащим углом 60°. Все боковые ребра пирамиды наклонены к плоскости основания под углом 45°. Найдите площадь боковой поверхности пирамиды. 3)диагональ сечения правильной четырехугольной призмы имеет площадь Q. Найдите площадь боковой поверхности призмы. 4)основание пирамиды – прямоугольный треугольник с острым углом 30°. Высота пирамиды равна 4см и образует со всеми боковыми ребрами углы 45°. Найдите площадь боковой поверхности пирамиды.
Объяснение:
Доказательство: Пусть даны две прямые a и b. Предположим, что они имеют более одной общей точки - точки M и N. Тогда через две точки M и N проходила бы не одна, а две прямые - прямые a и b. Но это противоречит аксиоме. Конец доказательства.
Что мне не нравится в доказательстве: Хорошо, мы доказали, что две разные прямые не могут иметь две общие точки. Но для меня ситуация выглядит так, что мы доказали только этот частный случай. А если мы возьмем три общие точки или больше? Не похоже, чтобы аксиома запрещяла, чтобы две разные прямые имели три общие точки.
Умом-то я понимаю, что если две прямые имеют более одной общей точки, то они являются одной и той же прямой. Но вот строго доказать, увы, не могу. И мне кажется, что для этого хватит все той же аксиомы. А вся моя проблема проистекает из-за неверного понимания самой аксиомы, которая скорее всего запрещяет и случаи с большим количеством общих точек.
МОЛОДЦЫ ДЕРЖИТЕСЬ УДАЧИ ВАМ -^-)