1. 12 * 7 = 84 см"
2. 24 см
3.49√2 см
4. -----------
5.24√2 см²
Объяснение:
1. Тут и так понятно)
2. Высота поделила основу пополам,тем самым поделив треугольник на 2 маленьких.По теореме Пифагора квадрат гипотенузы = сумме квадратов катетов. Найдём катет( половину основы треугольника).
225 = 81 +
= 225 - 81 = 144
х = = 12 см
Теперь узнаем длинну основы: 12 +12 = 24 см
3.Площадь ромба через его сторону и угол
S = a²·sin(β) = (7√2)²·sin(135°) = 49*2 * 1/√2 = 49√2 см
4. Не знаю, прости((((
5.Дано: трапеція КМРТ, МР=7 см, КТ=9 см, ∠Т=45°.
Проведемо висоту РН. Розглянемо ΔРТН - прямокутний.
∠Т=45°, тоді ∠ТРН=90-45=45°, тобто ΔРТН - рівнобедрений.
Нехай РН=ТН=х см, тоді за теоремою Піфагора
х²+х²=6²; 2х²=36; х²=18; х=√18=3√2; РН=3√2 см.
S=(МР+КТ):2*3√2=(7+9)/2*3√2=24√2 см²
сторона ромба равна Р:4=16:4=4 дм
Сумма углов параллелограмма, прилежащих к одной стророне ( а ромб- параллелограмм) равна 180°
Тогда тупой угол ромба равен 180° минус острый угол.
Если из тупого угла В ромба АВСД провести высоту ВН на АД, получим прямоугольный треугольник АВН, в котором катет ВН равен половине гипотенузы АВ.
Наверное, Вы уже знаете, что, если катет прямоугольного треугольника равен половине гипотенузы, он лежит против угла 30°,
Следовательно, тупой угол ромба равен 180°-30°=150°
Вариант решения:
Высота ромба - перпендикуляр, проведенный из вершины к его стороне или продолжению стороны..
В треугольнике АВН катет ВН равен половине гипотенузы АВ.
Приловжим к треугольнику АВН равный ему треугольник АНВ₁.
ВВ₁=2+2=4 дм
В треугольнике АВВ₁ все стороны равны 4 дм, следовательно, он равносторонний. В равностороннем треугольнике все углы равны.
Сумма углов треугольника равна 180ª⇒
∠ АВН=180°:3=60º ⇒
∠ АВС=∠АВН +∠НВС=60°+90°=150°