Объяснение: ЗАДАНИЕ 1
Проведём из вершины В высоту ВН. Так как треугольник равнобедренный то высота проведённая к основанию является ещё медианой и делит основание АС пополам, поэтому АН=НС=10÷2=5см.
Рассмотрим полученный ∆АВН. Он прямоугольный, а АН и ВН являются катетами, а АВ гипотенузой. По теореме Пифагора найдём катет ВН
ВН²=АВ²-АН²=13²-5²=159-25=144;
ВН=√144=12см.
И сейчас мы можем найти синус, сосинус и тангенс угла АВН:
Синус- это отношение противолежащего от угла катета к гипотенузе, поэтому sinABH=5/13
Косинус -это отношение прилежащего к углу катета к гипотенузе , поэтому
cosABH=12/13
Тангенс - это отношение противолежащего от угла катета к прилежащему. Поэтому:
tgABH=5/12
ответ: sinABH=5/13; cosABH=12/13;
tgABH=5/13
ЗАДАНИЕ 3
sinA=5/8
cosA=3/8
tgB=3/5
ЗАДАНИЕ 5
Найдём АВ через синус угла:
АВ=6÷sin24°; (sin24°≈0,4067)
AB=6÷0,4067≈14,75
Мы нашли гипотенузу АВ и теперь найдём по теореме Пифагора АД:
АД²=АВ²-ВД²=14,75²-6²=
=217,56-36=181,56; АД=√181,56≈13,47
Так как АД=ДС, то
АС=13,47×2=26,94см
ответ: АС=26,94см; АВ=ВС=14,75см
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.