ОБРАТНОЕ УТВЕРЖДЕНИЕ:
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
Дано: ΔАВС, ВН- высота, АН=НС
Доказать: АВ=ВС
Доказательство: ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))
ОБРАТНОЕ УТВЕРЖДЕНИЕ:
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
Дано: ΔАВС, ВН- высота, АН=НС
Доказать: АВ=ВС
Доказательство: ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))
Пусть ВК высота ∆АВС.
∆АВК прямоугольный, по т Пифагора АК=√( 5² - 4²) =3 (см).
Тк ∆АВС равнобедренный, то высота является медианой=> АС=6 см.
Тк призма прямая, то все грани прямоугольники , и диагонали равны =>
АА1С прямоугольный , по т Пифагора АС=√( 8² + 6²) =10 (см).