А) нет, т. к. если одна из параллельных прямых пересекает плоскость, то и вторая прямая пересечёт эту плоскость.
б) могут.
Пусть в плоскости ą лежит прямая с||а, b пересекает плоскость ą в точке, принадлежащей прямой с. Тогда, если прямая пересекает одну из двух параллельных прямых, то она пересечёт и вторую.
в) могут. Т. к. а||плоскости альфа, то существует плоскость ß, в которой лежит а. если одна из 2 прямых лежит в некоторой плоскости (в данном случае прямая а), а другая прямая (прямая b) пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301