Даны точки А(4;-2;-2), В(1;1;-1), С(0;2;-2) и Д(3;-1;-3).
Доказательством, что четырёхугольник АВСД является ромбом, служит равенство длин сторон и неравенство диагоналей.
Расстояние между точками находим по формуле:
d = √((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²)
АВ ВС АС
4,3589 1,73205 5,6569
19 3 32 квадраты
СД ВД АД
4,3589 3,4641 1,73205
19 12 3 квадраты.
Как видим, АВСД не ромб, а параллелограмм. Противоположные стороны равны, диагонали не равны.
если а║в, то
∠1=∠3=135° как вертикальные
∠2=∠4=180-135=45° (углы 2 и 3 - смежные)
∠5=∠7=∠1=∠3=135° как соответственные
∠6=∠8=∠2=∠4=45° как соответственные