В задаче этого не сказано, но будем исходить из того, что шестиугольник вписан в окружность, образованную сечением цилиндра. Тогда длина его стороны - 7см. Шестиугольник состоит из шести равносторонних треугольников, высота которых равна 7√3 / 2, площадь - 1/2 × 7 × 7√3/2 = 49√3/4. Значит, площадь шестиугольника = 147√3/2 (S2) Площадь сечения стержня = 49π (S1) Площадь отверстия = 0.16π (S3) V1 (стержня) = 49π * 89 V2 (отходов) = (S1 - S2 + S3) × 88 + S1 × 1 (последний кусочек - остаток стержня из которого уже не получится целой гайки) Процент отходов = V2 / V1 * 100 Гаек получится 88 / 4 Остальное посчитайте сами =)
Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
Объяснение:
1. ВС=45:9=5 ед.
2. Центр описанной окружности лежит на середине гипотенузы.
11*2=22 ед. - это длина гипотенузы
3. Сумма острых углов прямоугольного треугольника составляет 90°
Пусть ∠1=х°, тогда ∠2=х+24°
х+х+24=90
2х=66
х=33
∠1=33°; ∠2=33+24=57°