Г10 см 4. У рівнобедреному трикутнику з периметром 40 см основа в 2 рази менша від бічної сторони. Знайти сторони трикутника. Дано: ДАВС рівнобедрений (AB ВС); РДАВС = 40 см; AC у 2 рази менша від AB. Знайти: AC; АВ; ВС. 30
Многоугольником называется фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек. Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины. Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине. Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника. Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О. Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°. В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360° Таким образом, сумма всех внутренних углов многоугольника равна n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
Боковые стороны по 16 и основание 8
Объяснение:
Пусть основание =х, тогда боковые стороны равны 2х
зная что периметр равен 40 составим уравнение
2х+2х+х = 40
5х=40
х=40:5
х=8
Боковые стороны 2х = 2•8
Основание х=8