АС=4х
СВ=3х
АС+СВ=АВ
4х+3х=21
7х=21
х=3
АС=4*3=12
СВ+3*3=9
ответ:АС=12см;СВ=9см
Простым перемножением длин отрезков легко показать, что все хорды равны. Отсюда сразу следует, что углы между ними 60 градусов. "Средние" части хорд (у которых длина а/2) образуют равносторонний треугольник. Из соображений симметрии понятно, что центр этого треугольника совпадает с центром нашей окружности (а где еще могут пересекаться перпендикуляры через середины "СРЕДНИХ" ЧАСТЕЙ :))) Нас интересует расстояние до хорды, которое равно радиусу окружности, вписанной в этот треугольник, то есть d = a*корень(3)/12; (напоминаю, что треугольник имеет стороны a/2)
Теперь, зная расстояние от хорды длины а, мы можем вычислить радиус.
R^2 = (a/2)^2 + d^2 = a^2*(1/4 + 3/144) = a^2*39/144; R = a*корень(39)/12;
Пусть даны два отрезка а и m и угол α. Надо построить ΔАВС такой, что ВС = а, ΔBCD АВ + АС = m.
Решение возможно лишь при а < m т.к. сумма любых двух сторон треугольника больше третьей стороны.
Построим ΔBCD по двум сторонам (BD = m, ВС = а) и углу между ними (∠В = α).
Проведем серединный перпендикуляр от CD, он пересечет BD в точке А. AD = АС. Получаем искомый ΔBCD, где ВС = а, ΔBCD В = α, АВ + АС = m, т.к. АС = AD.
Если m = а, то в ΔBCD ∠С будет больше ∠D. Серединный перпендикуляр d к стороне CD по теореме 1.1. должен пересекать либо сторону ВС, либо СD.
Докажем, что серединный перпендикуляр пересекает именно BD.
Допустим, d пересекает сторону ВС в точке М, а прямую BD в точке K. Т.к. KD > BD, то ∠KCD < ∠BCD.
По свойству серединного перпендикуляра ΔDKC — равнобедренный, таким образом, ∠KCD = ∠D, но тогда ∠D > ∠BCD (т.к. m > a), то есть в ΔBCD ∠D < ∠С. Противоречие, т.е. d пересекает именно ВD.
Таким образом, задача имеет единственное решение.
AC=4x
CB=3x
AC+CB=AB
4x+3x=21
7x=21
x=3
AC=4*3=12
CB+3*3=9
ответ: AC = 12 см; CB = 9 см
Объяснение: