Найдем площадь оснований, 2*(6*4/2)=24/см²/, найдем сторону Аодин штрих А три штрих по теореме ПИфагора, т.к. Атри штрих А два штрих делится медианой пополам и медиана проведена к основанию равнобедренного треугольника. √3²+4²=5/см/
Вычислим высоту призмы она равна А один А один штрих из треугольника А один А один штрих А три, А один А три умноженное на тангенс угла Аодин штрих Атри А один, т.е. 5*√3=5√3 /см/
Найдем боковую поверхность призмы, умножив периметр основания 5+5+6=16 на высоту 5√3, получим 80√3/см²/, а сложив площади оснований с боковой поверхностью, получим площадь полной поверхности (80√3+24) см²
1)х+х+х+5=35 3х=30 х=10 ответ:Боковые стороны =10;Основание=15 2)х+х+4х+4х=360 10х=360 х=36 ответ:два угла=36;другие два=144 3)х+2х+2х=40 5х=40 х=8 ответ:боковые стороны=16;основание=8 4)доказательство: 1.Рассмотрим треуг BMD и теуг BKD: 1)BD-общая 2)BM=BK(т.к. М и К -середины боковых сторон,а теуг АВС -равнобедренный) 3)угол MBD=углуDBK(т.к. BD в равнобедренном треуг является медианой,высотой и биссектрисой) Следовательно,треуг BMD=треуг BKD(по первому признаку равенства треугольников) 5)Доказательство: рассмотрим два треугольника: 1)одна сторона будет общая 2)углы при основании равны 3)углы(вверху этого треугольника)будут равны(т.к. Высота будет являтся и биссектрисой) следовательно,треугольники,которые образовала высота,будет равны! 6)не знаю(точнее не уверенна) 7)а)х+4х+4х-90. 9х=270 х=30 ответ:А=30;В=120;С=30 б)эти стороны равны(т.к. Мы узнали,что треугольник равнобедренный)
Найдем площадь оснований, 2*(6*4/2)=24/см²/, найдем сторону Аодин штрих А три штрих по теореме ПИфагора, т.к. Атри штрих А два штрих делится медианой пополам и медиана проведена к основанию равнобедренного треугольника. √3²+4²=5/см/
Вычислим высоту призмы она равна А один А один штрих из треугольника А один А один штрих А три, А один А три умноженное на тангенс угла Аодин штрих Атри А один, т.е. 5*√3=5√3 /см/
Найдем боковую поверхность призмы, умножив периметр основания 5+5+6=16 на высоту 5√3, получим 80√3/см²/, а сложив площади оснований с боковой поверхностью, получим площадь полной поверхности (80√3+24) см²