М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
arelbeis
arelbeis
09.09.2021 07:19 •  Геометрия

Висота правильної трикутної піраміди 6 см, а бічна грань утворює з площиною основи кут 45 градусів. знайдіть сторону основи піраміди

👇
Ответ:
Піраміда КАВС, К-вершина, КО-висота=6, проводимо перпендикуляр АН на ВС, кутАНК=45, трикутникКОН прямокутний, рівнобедрений, кутОКН=90-кутАНК=90-45=45, ОН=ОК=6. АН в рівносторонньому трикутнику=висоті=медіані=бісектрисі, О - центр трикутника -перетин медіан..., медіани при перетині поділяються у відношенні 2:1, починаючи з вершини, ОК - 1 частина, АО-2 частини=2*6=12, АН=12+6=18, АС=2*АН*корінь3/3=2*18*корінь3/3=12*корінь3
4,4(91 оценок)
Открыть все ответы
Ответ:
ramser7300
ramser7300
09.09.2021
Случай 1 : Площадь бо́льшего треугольника равна 8 (ед²).Отношение сходственных сторон подобных треугольников равно коэффициенту подобия.

Пусть S₁ - это площадь бо́льшего треугольника, а S₂ - площадь меньшего треугольника.

Пусть k > 1 (это значит, что в числителе будет стоять бо́льший треугольник).

k = \frac{5}{2} = 2,5.

Площади подобных треугольников относятся как квадрат коэффициента подобия.

Отсюда -

\frac{S_{1} }{S_{2} } = k^{2} \\\\\frac{8}{S_{2} } = 2,5^{2} \\\\\frac{8}{S_{2} } = 6,25\\\\S_{2} = \frac{8}{6,25} \\\\\boxed{S_{2} = 1,28}

1,28 (ед²).

- - -

Случай 2 - Площадь меньшего треугольника равна 8 (ед²).

В этом случае наоборот k < 1 (в числителе будет стоять меньший треугольник).

S₁ - площадь бо́льшего треугольника, S₂ - площадь меньшего треугольника

Тогда -

k = \frac{2}{5} = 0,4.

\frac{S_{2} }{S_{1} } = k^{2}\\\\\frac{8 }{S_{1} } = 0,4^{2}\\\\\frac{8 }{S_{1} } = 0,16\\\\S_{1} = \frac{8}{0,16}\\\\\boxed{S_{1} = 50}

50 (ед²).

4,5(6 оценок)
Ответ:
милана59
милана59
09.09.2021

Теорема. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Доказательство. Пусть ABC – данный треугольник, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Прямоугольные треугольники AOD и AOE равны по гипотенузе и катету. У них гипотенуза AO общая, а катеты OD и OE равны как радиусы. Из равенства треугольников следует равенство углов OAD и OAE. А это значит, что точка O лежит на биссектрисе треугольника, проведённой из вершины A. Точно так же доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.

Объяснение:

4,4(58 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ