1) B=D=126°(как внутренне накрест лежащие):Сумма всех углов параллелограмма равна 360°,следовательно угол A+C=360°-(126°+126°)=108°, угол А=108°/2=54°,угол А=углу С=54°
2)P=36см,к пример сторону 1 и 3 примем за 1х+1х,стороны 2 и 4 за 2х+2х,сумма всех сторон равна : 6х=36,из этого х=6,дальше :сторона 1 равна 1х=6,сторона 2 равна 2х=12,сторона 3=стороне 1,а сторона 4= стороне 2
3)P=40дм=400см,у параллелограмма сторона 1=стороне 3,а сторона 2=стороне 4,следовательно: сторона 1=3х,2=2х,сторона 1=3,сторона 2=4
сумма всех сторон равна 400см=10х,х=40.Сторона 1 равна 120см,сторона 3 =стороне 1=120см,сторона 2 равна 80см,сторона 4=стороне 2=80см
4)Сумма углов параллелограмма=360°,из этого следует что угол D=360°-237°=123°,угол В=углу D=123° (как накрест лежащие),угол А+С=237°-123°=114°,угол А=114°/2=57°,угол С=углу А=57°
Дано:
треугольник АВС,
угол А = угол С,
ВМ — высота.
Доказать: треугольник АВМ = треугольник СВМ.
Доказательство:
Свойство равнобедренного треугольника: если в треугольнике два угла равны, то этот треугольник является равнобедренным.
(У нас, по условию задачи, угол А равен углу С, значит треугольник АВС является равнобедренным)
угол А = угол С => треуг. АВС — равнобедренный.
(Равнобедренный треугольник — треугольник, у которого две стороны равны, эти две стороны называются боковыми сторонами, а третья сторона — основанием. Какие же стороны боковые? Признак равнобедренного треугольника: если треугольник является равнобедренным, то углы при его основании равны. Соответственно, сторона АС является основанием, а стороны АВ и ВС — боковые стороны и они равны)
АВ = ВС.
(Теперь разберёмся с высотой ВМ. Высота равнобедренного треугольника — перпендикуляр, проведённый из вершины треугольника, к противолежащей стороне, в данном случае, к основанию треугольника)
ВМ — высота, ВМ перпендикулярно АС. <рисунок1>
Свойство равнобедренного треугольника: в равнобедренном треугольнике медиана, биссектрисса и высота, проведённые из вершины, противолежащей основанию, совпадают.
(Получается, высота ВМ — это и биссектрисса ВМ, и медиана ВМ. Биссектриса — прямая, делящая угол пополам. Медиана — отрезок, соединяющий вершину треугольника с серединой противоположной стороны, в данном случае, с серединой основания)
Рассмотрим ВМ как биссектрису => угол АВМ = угол СВМ. <рисунок2>
Рассмотрим ВМ как медиану => АМ = МС. <рисунок3>
(Соединим все полученные данные и докажем, что треугольники АВМ и СВМ равны. По всем трём признакам равенства треугольников, эти треугольники равны, но распишем третий признак)
Третий признак равенства треугольников — по трём сторонам: если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
АВ = ВС, ВМ — общая сторона для двух треугольников, АМ = МС => треугольник АВМ = треугольник СВМ.