Рассмотрим горизонтальную проекцию пирамиды. Пирамида правильная значит в основании правильный треугольник со стороной 4, и в сечении также правильный треуголник со стороной 1. Построим равносторонний треугольник АВС со стороной 4, затем в центре его параллельно сторонам первого треугольника построим треугольник MFN со стороной 1. Проведём боковые рёбра пирамиды АМ, BF,CN. Проведём высоту большего основания ВД. Отметим на ней точку О центр вписанной окружности. В неё проецируется вершина пирамиды О1. Причём , в правильном треугольнике ДО=1/3ВД=1/3*(( корень из( 16-4))=1,15. Боковая грань АМNC равнобедренная трапеция . Проведём в ней высоту NQ=КД=корень из (4-1,5)=1,32(по теореме Пифагора). Точка К расположена на пересечении MN и ВД. В плоскости перпендикулярной АВС и проходящей через ВД получим трапецию ДКFB. Точка О лежит на ДВ. Восстановим из неё перпендикуляр до пересечения с продолжением АК в точке О1. ДО1=1,76 найдём из подобия треугольников. Из точки К опустим перпендикуляр KG на ДВ. cos О1ДО=ДО/ДО1=0,653. Отсюда sin О1ДО=0,764.Тогда Н=KG=КД*sin О1ДО=1,32*0, 764=1,0.
Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°