М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
снегурочка98
снегурочка98
26.03.2020 01:53 •  Геометрия

Дан куб ABCDA1B1C1D1. укажи две прямые, скрещивающиеся с прямой AD.

👇
Открыть все ответы
Ответ:
ggggdcdxf
ggggdcdxf
26.03.2020
Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а  НМ, то а  АМ, і навпаки, якщо а  АМ, то а  НМ.

Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК  АВС; КD - похила; АDБ - її проекція. Оскільки АD  DС, то за теоремою про три перпендикуляри маємо КD  DС.3) Тоді площа квадрата S = 82 = 64 (см2).

Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК  АВС (мал. 417).2) КМ  АС, тоді за теоремою про три перпендикуляри: ВМ  АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку 
4,4(28 оценок)
Ответ:
gsajhja
gsajhja
26.03.2020

Дано: ABCD — квадрат, Sabcd= 4, т.М — середина АВ, АМ=ВМ, DH⟂СМ.

Найти: DH.

Решение.

1) Найдем сторону квадрата.

АВ²= 4;

АВ= 2 (–2 не подходит).

AB=BC=CD=AD= 2.

т.M — середина АВ, значит, АМ=ВМ= 2:2= 1.

2) Мы видим два равных прямоугольных треугольника: ΔMBC и ΔMAD (равны по двум катетам).

Найдем их площадь. Площадь прямоугольного треугольника равна половине произведения его катетов.

Значит, Smbc= Smad= ½•1•2= 1.

3) А площадь треугольника MDC равна разности площади квадрата и площадей треугольников MBC и MAD.

Т.е. Smdc= Sabcd–Smbc–Smad= 4–1–1= 4–2= 2.

4) Найдем сторону МС прямоугольного треугольника МВС (МС - это гипотенуза) по т.Пифагора:

МС²= МВ²+ВС²;

МС²= 1+2²;

МС²= 5;

МС= √‎5

5) Площадь обычного (произвольного) треугольника равна произведению половины основания этого треугольника на высоту, проведённую к этому основанию.

Для треугольника MDC это выглядит так:

Smdc= ½•MC•DH.

2= ½•√‎5•DH;

2 : ½ = √‎5DH;

√‎5DH= 4;

DH= 4/√‎5.

Расстояние от вершины D квадрата ABCD до прямой СМ равно 4/√‎5.

ОТВЕТ: 4/√‎5.


На стороне АВ квадрата АВСД отмечена середина М. Найдите расстояние от вершины Д до прямой СМ, если
4,8(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ